Adaptive Weight Change Mechanism for Kohonens's Neural Network Implemented in CMOS 0.18 um Technology
نویسندگان
چکیده
In this paper, we present a block of adaptive weight change (AWC) mechanism for analog current-mode Kohonen's Neural Network (KNN) implemented in CMOS 0.18 μm technology. As some other essential building blocks of KNNs dealing with the calculations of the Euclidean distance, formation of a conscience mechanism and a determination of the winner-takes-all (WTA) circuits have been already developed, the AWC forms another essential step towards the realization of the network. We show that the proposed network works with small values of analog signals thus resulting in low power dissipation and chip area when compared with digital realizations of KNNs. Each neuron occupies chip area equal to about 1000 μm and dissipates 20 μW of power for 20 MHz input data rate.
منابع مشابه
Initialization mechanism in Kohonen neural network implemented in CMOS technology
An initialization mechanism is presented for Kohonen neural network implemented in CMOS technology. Proper selection of initial values of neurons’ weights has a large influence on speed of the learning algorithm and finally on the quantization error of the network, which for different initial parameters can vary even by several orders of magnitude. Experiments with the software model of designe...
متن کاملMIXDES 2008 Proceedings
In this paper, we present an experimental current-mode Kohonen neural network (KNN) implemented in a CMOS 0.18 m process. The network contains four output neurons. Each neuron has three analog weights related to three inputs. The presented KNN has been realized using building blocks proposed earlier by the authors, such as binary tree current-mode winner takes all (WTA) circuit, Euclidean dista...
متن کاملAnalog-Counter-Based Conscience Mechanism in Kohonen's Neural Network Implemented in CMOS 0.18 m Technology
In this study, we present a hardware implementation of the conscience mechanism in Kohonen self-organizing maps. The proposed realization of the conscience mechanism is important to the functioning of the neural network as it eliminates so-called dead (inactive) neurons. As a result the network learning, the level quantization error can be reduced. The conscience mechanism and the Winner Take A...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملCystoscopic Image Classification Based on Combining MLP and GA
In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007